
Vibrational properties of an octagonal quasicrystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 6343

(http://iopscience.iop.org/0953-8984/4/29/018)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 00:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/29
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Candens. Matter4 (1992) 6343-6354. Printed in the UK 

Vibrational properties of an octagonal quasicrystal 

Zhengyou Liut, Zhehua Zhangt, Qing Jiangt and Decheng TianS 
t Department of Physics, Wuhan University. Wuhan 430072, People’s Republic of China 
% International Centre for Material Physics, Academia Sinica, Shengyang 110015, 
People’s Republic of China 

Received 3 January 1992, in final form 9 March 1992 

Abstract. The vibrational densities of states for an octagonal quasiperiodic lattice are cal- 
culated. Crossovers from phonon excitations to fracton-like excitations are found in the 
low-frequency parts of the spectra (this part is referred to as the continuous spectrum); 
meanwhile, localized vibrational modes are observed in the high-frequency parts (this part 
isreferredtoasthecharacteristicspeaNm).Thespectralfeahlresaregovemed bynandp,  
the central and non-central force constants of the Born model. For the low-frequency 
continuous spectrum, when nip equals unity (isotropic model) and when alp is not very 
large, a power law is satisfied in the fracton-like excitation frequency regime but, when w / p  
approaches infinity, the spectrum deviates from the original power law. For the high- 
frequency characteristic spectrum, in an isotropic situation, i.e. in the case when w / B  = 1, 
the localized mode is isolated and a gap separates it from other modes but, when there is no 
longer isotropy, the gap disappears. 

‘ 

1. Introduction 

In recent years, the spectral properties of the quasiperiodic lattice have aroused much 
interest; undoubtedly, one major reason for this is the experiments by Schechtman eta1 
[l] which show strong evidence for the existence of quasicrystals in nature. Owing to the 
peculiar symmetries of this kind of structure, one expects some significant features to 
appear in their electronic (or vibrational) spectra. Kohmoto and co-workers !24] have 
treated theoretically the one-dimensional version of quasiperiodic lattices, and Cantor- 
set-like electronic (or vibrational) spectra with self-similar features were found. For 
Penrose tiling, the two-dimensional quasiperiodic lattice with a fivefold axis, it is not so 
easy to obtain the eigenvalue of the Hamiltonian analytically; many numerical methods 
have been developed to obtain the electronic (and/or vibrational) spectra. The earliest 
work on the spectral properties of a two-dimensional quasiperiodic lattice was done by 
Choy [5] and by Odagaki and Nguyen [6];  both investigated the behaviour of s electrons, 
andacentral peak was found in the electronic density of states. Kohmoto and Sutherland 
[7,8] explain the central peak as a zero-width band of localized electronic states; 
furthermore, they showed the local pattern of the localized states. In addition, the 
vibrationaldensity ofstates, as ananalogue of the electronicdensityof states, was briefly 
referred to in [a]. Sire and Bellissard 191 investigated the electronic behaviour of the 
octagonal lattice; they obtained the electronic spectra and structure using the renor- 
malization group method, hut the vibrational properties of this lattice remain unknown. 
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In addition to the investigation of the spectral properties of a quasiperiodic lattice, 
the investigation of the spectral properties of fractals has recently been very active 
too. Since Alexander and Orbach [lo] anticipated theoretically a new excitation (they 
referred to it as a fracton) frequency regime in the low-frequency spectra of fractal 
systems, many numerical methods had been used to check this in the DLA cluster 
[Ill, percolation cluster (121 and other fractal clusters. We have studied the fractal 
dimensionalities for different quasiperiodic lattices with a mass scaling scheme [ 131; it is 
found that quasiperiodic lattices have integral fractal dimensionalities. For a Fibonacci 
chain, the dimensionality is one; for Penrose tiling and an octagonal lattice, the dimen- 
sionalities are two. By analogy with fractals, we believe that the fracton-like excitation 
will appear in the low-frequency part of the vibrational spectrum of a quasiperiodic 
lattice but much less attention has been paid to the low-frequency part of the vibrational 
spectrum in the past. 

We perform our numerical computation on an octagonal lattice in the present work. 
Theaimisthreefold: first, wewouldlike tochecktheexistenceoffracton-likeexcitations 
in quasiperiodic lattices; secondly, it is expected that the high-frequency spectral proper- 
ties for an octagonal lattice are specific and very different from those of Penrose tiling; 
thirdly, we consider the vector nature of the vibrational problem (which is more realistic 
for an elastic system), to determine how the vector nature ofthe vibration influences the 
spectrum. In this case, the system is not isotropic, the vibrational problem cannot be 
incorporatedinto thes-electron problem, and weexpectsomespecificfeaturestoappear 
in the spectrum; however. this type of problem has previously been ignored by 
researchers. 

2. Model and method 

According to the Born model [14], the potential energy of the lattice is expressed as 
NN NN 

(1) V = f ( ( Y - P ) X [ ( u ,  - u I ) ~ ~ , / l ~ + ~ / 3 X l ~ i - U / l  2 

'.I '.I 

where ui is the displacement of the ith site, riI is the unit vector from site i to site j .  (Y 

is the bond-stretching force constant and /3 is the bond-bending force constant; the 
summation runs over all the nearest neighbours. Thus, the vector nature of the elastic 
forces is included naturally. When a is chosen to equal p, the system considered 
becumes isotropic. 

We adopt the widely used recursion method of Haydock era1 [15.16] which offers 
fast computational speed and, above all, reliability. 

The local vibrational density of states [ll] can be expressed as 

p L ( w )  = - ( 2 ~ / ~ ) I m ( u ~ l l / ( w * - w ) l u ~ ) =  -(2w/n)Im(u,IGlu,) ( 2 )  

where G = l /(wz - W) is the Green function, W is the dynamical matrix and lui) is 
the displacement vector of site i. The global density of states following Choy [ 5 ]  and 
Peng and Tian [ I l l  takes the form 

p G  (U) = -CZO/Z) Im (3) 

where 10) is the initial vector whose elements are uncorrelated variables chosen from 
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Figure 1. A portion of the octagonal lattice, where six kinds of sites are indicated by V, 
(I = 3,4,5,6,7,8), 1 representing the coordination number of the labelled site. 

a Gaussian distribution with mean zero and covariance unity. In the actual calculation, 
ten initial vectors are chosen to obtain the average. 

The octagonal lattice is a projection of a four-dimensional regular lattice onto a 
two-dimensional plane. The cluster used in our calculation is rather large, containing 
10 457 sites; we expect that the boundary influence can be greatly reduced. Figure 1 
shows a portion of our cluster; the line segments joining two sites represent bonds, 
and all bonds have equal lengths. The figure in fact is a tiling with eightfold symmetry. 
Two kinds of tile can be seen: one is a square, and the other is a rhombus with an 
acute angle n/4. Six kinds of local configuration can be noted; those in which the 
central sites are indicated by V, ( I  = 3,4,5,6,?,  8 denoting the coordination number 
of the central site) are examples. In our model, all sites are occupied by the same 
atoms with mass unity, and the bond lengths are all taken to be equal to unity; by 
changing the force constants a and b, we calculate the corresponding spectra. 

Under the free boundary condition, for the cluster, we calculated three series of 
densities of states (including global and local values), firstly with the constants CY = 1, 
/3 = 0, secondly with a = 1, = 1, and thirdly with a = 5 ,  p =  1, and also a global 
density of states with a = 50, p = 1. Each spectrum can be considered to be composed 
of two parts: the low-frequency part is smooth and continuous, while the high- 
frequency part has many sharp jumps (for an integrated density of states) or sharp 
peaks (for the density of states). We shall refer to the two parts as the continuous 
spectrum and the characteristic spectrum hereafter. 

3. The low-frequency continuous spectrum 
Figures 2(a), 2(b), 2(c) and 21d) show the global vibrational densities of states for the 
cluster with a= 1, p = l,withcu= 5 , p  = l,withcu= 5 0 , p  = 1 andwitha = l , p  = 0, 
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respectively. We use a logarithmic coordinate system; the horizontal axis is the 
logarithm of the angular frequency of vibration, and the vertical axis is the logarithm 
of the global vibrational densities of states. Here, we consider only the continuous 
spectra, i.e. the low-frequency parts of the whole spectra. From the figure, the 
anomalous behaviour at low frequencies can be clearly seen near the frequency w,; 
similar anomalous behaviour in three-dimensional Penrose tiling was reported by Los 
and Janssen [17]. Below the frequency w,, the spectra are straight lines, and the slopes 
are unity. They correspond to typical phonon excitations, satisfying the power law 
pG(w) a wds-' with d, = 2. For the three cases with a =  1, p = 1, with o(= 5, p = 1 
and with (Y = 50, ,!3 = 1, within a frequency region above U,, the spectra can be fitted 
as straight lines; the slopes are still unity, i.e. the spectral dimensionalities are two, 
exhibiting the same power law pG(w) a d 3 - l .  Comparing the figure with the 
vibrational spectra for fractals, e.g. for a DLA ChSter [11] and a percolation cluster 
[12], it can he seen that the characters of these spectra are completely similar to those 
for fractals. In the case of a fractal, the frequency w, is called the crossover frequency; 
below w,, the vibrational excitation is typical of a phonon too while, above w,, the 
vibrational excitation is due to a fracton (and no longer to a phonon!). There are 
two differences between the fracton and phonon [lo] as follows: first, the spectral 
dimensionality of the fracton is different from that of the phonon, because the former 
depends on the fractal dimensionality of the system being considered, while the latter 
is a fixed integer; secondly, the vibrational state of the fracton is different from that 
of the phonon, because the former is usually non-extended, while the latter is always 
extended. As an analogue, in the case of a quasicrystal. the h e a r  spectra above w, 
(we call w, the crossover frequency in this case also) should correspond to a new 
vibrational excitation; we introduce the term fracton-like to denote it in order to 
indicate the similarity between it and the fracton in the fractal system. There is 
a difference between the fracton-like and fracion spectral dimensionalities, which 
originates from the difference between the fractal dimensionalities of the fractal and 
the quasicrystal. For a two-dimensional fractal, the spectral dimensionality is not 
larger than the fractal dimensionality (which is not larger than 2) but, for a two- 
dimensional quasicrystal, the spectral dimensionality (see figures 2(a)-2(c)) is equal 
to the fractal dimensionality (which is 2 [13]). Although the fracton-like spectral 
dimensionality above w, is the same as that of a phonon below w, (both equal to 2), 
we shall see that the vibrational state for fracton-like excitation is quite different from 
that for the phonon in the next paragraph; this is the very reason why we need to 
introduce the termfracton-like todistinguish the new excitation fromphononexcitation. 
From the above result and according to d, = 2dr/dw [lo], one can obtain the random- 
walk dimensionality d, = 2, for (?) = = t ;  there is no anomalous diffusive behav- 
iour. When alp approaches infinity the spectrum in the frequency region becomes Rat 
(see figure 2(d)). The deviation from the original power law results from the influence 
of the anisotropic force. A similar result was found in the percolation model [IS] and 
the DLA model [ll]. 

It is interesting to examine the vibrational states in the fracton-like excitation fre- 
quency regime, Figure 3 shows the local densities of states in the low-frequency part for 
sites V,V, with force constants (Y = 1, p = 1. Below w,, the densities remain the same, 
independent of the sites, which indicates that the phonon states are extended but, above 
w,, the densities depend on the sites, which suggests that fracton-like excitations are 
neither extended nor localized (see the arguments about vibrational states in the next 
section). 
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Figure 2. The vibrational densities of states for the octagonal lattice with the following 
constants:(a) w =  p = I;(b)a = 5 , p  = I ; (c )a=  50,p = l ; ( d ) a =  1,p = 0.Thecrossovers 
are indicated. 

4. The high-frequency characteristic spectrum 

Now, let us concentrate on the characteristic spectrum, which implies characteristics 
related to the structure of the octagonal lattice. Figure 4 shows the integrated densities 
p’ (w)  of states of the system with (Y = 1, @ = 1. Figure 4(a) shows the global density 
pl; (w)  of states and figures 4(b)-4(g) show the local densities of states for six different 
kinds of site: V,, V3-V7. Figures 5 and 6 are similar to figure 4, but with (Y = 5, /3 = 1 
and with (Y = 1, @ = 0, respectively. Comparing figure 4 with figure 5 and figure 6 ,  we 
find that the global structures of the corresponding spectra are similar. Let us examine 
figure 4 first. We can find some small steps in p& (0) (see figure 4(a)) which are specified 
in the figure. This means that there exist some degenerate vibrational modes at these 
specificfrequencies. Comparing pl; (w)  (figure 4(a)) withp;(w) (figures4(b)-4(g)), we 
can see that these steps originate from the larger steps in the different &(U). The large 
steps in a given local spectrum indicate that the corresponding vibrational modes are 
favoured by the special local configuration; so they are degenerate. For example, mode 
~ ( 1 )  and w3(2) are favoured at site V3, w ,  is favoured at V7, and eigenmode o8 = 3.05 
is absolutely dominant at V8. There exists a simple relation between the frequency of a 
vibrational mode favoured by a certain site and the coordination number of the site; the 
larger the coordination number, the higher is the frequency or, to express it in another 
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figure 7. The local configuration of site V, to ils second-nearest neighbours 

way, the denser the local configuration, the higher is the frequency of the mode that it 
favours. 

From these local spectra (figures 4(b)-4(g)), we can, furthermore, obtain infor- 
mation about the vibrational states of these specific modes. There exist three states for 
the vibrational modes. 

(1) If all the local densities of states for all the sites in the cluster are the same for a 

(2) For a given mode, if the local densities of states for the sites in an area are not 

(3) If both the conditions above cannot be satisfied, the vibrational mode is neither 

certain vibrational mode, the mode is extended. 

zero but become zero for the sites beyond the area, the mode is localized at the area. 

extended nor localized; the state is called critical. 

According to these arguments, all the specific modes should be critical except the 
highest-frequency mode w,, which is localized. 

Let usexamine mode w8carefully. It producesasharp jumpat onin the local density 
of states for site V8 (figure 4(b)): so the mode has a much larger amplitude at the site. 
Comparing the local density of states for site V, with those for its nearest neighbour V5 
(figure 4(c)), second-nearest neighbour V4 (figure 4(d)) and third-nearest neighbour Vs 
(figure4(e)), wefindthat the jumpsat wsdecaytozerorapidlyfromV,toVS;thismeans 
that the amplitude of mode w8 attenuates to zero at the third-nearest neighbour, and 
thus the mode is highly localized, with a localized radius of about .\/? + 1. Mode w8 is 
not only localized but also an isolated state in the frequency space. At both sides of w,, 
within a range of frequencies, & ( w )  and aU p i ( w )  are flat, causing the densities of 
states to fall to zero: so there exists a frequency gap at the left-hand side of w8 (in fact, 
the gap width is w8 - w7), isolating mode w8 from the modes below w,, while w 8  is the 
highest-frequency mode. 

We can make an approximate calculation for os under the isotropic model. Figure 
7 shows the local configuration of site V, to its second-nearest neighbours. When (Y = 
p, equation (1) gives the isotropic potential 

NN 

Under the potential, the vector problem becomes a simple scalar problem; we can 
remove the vector notation for U .  With luo) representing the displacement of site V,, 
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lui) (i = 1,2, . . ., 8) the displacements of its eight nearest neighbours and I U,) ( I  = 
1.2, . . ., 8) the displacements of its second-nearest neighbours, we have 

Let I uo) = lu,) exp(iwt); we get 

where '$ = mw2/a. For eight nearest neighbours, we have 

@l~,)=31~l)-l~o)-lul)-Iu,) 
@ I ~ I ) = ~ I ~ ~ ) - I ~ o ) - I ~ ~ ) - I ~ ~ )  

'$Iu8)=3I~8)- l~o)- /U,)- IU8).  

(7) 

From equations (6) and (7), extracting the lu,) and inserting them in equation (6). we 
get a relation between I uo) and I U,): 

Because mode wo is highly localized, I U,) is much smaller than \U&; ignoring I U,), 
approximately we have 

4@ - '$(@ - 3)/2 = 8. (9) 
The equation gives two roots: the reasonable root is '$ = 9.3, ormwz/a = 9.3. Let m = 
1, a = 1; according to our model, we get w = 3.05, which agrees with our numerical 
result os = 3.05 excellently. 

Although the structures in figure 4, figure 5 and figure 6 are similar, there are 
differences between them. When a/P increases from unity, the gap exhibited very 
clearly in the case of a = f i  (figure 4) becomes so small that it cannot be recognized any 
longer (see figures 5 and 6). Thus, mode wg is not isolated now, but it is still localized. 
Figures 5(b)-5(e) and figures 6(b)-6(e) show the result evidently. With a simple calcu- 
lation, we find that mode w8 in all cases is superlocalkzed, and its eigenfunction - exp(-ArY), with A > 1 and y > 2. 

5. Conclusions 

The vibrational densities of states for an octagonal quasiperiodic lattice with varying 
force constants are calculated. Crossovers from phonons to fracton-like excitations, 
which appear to be the anomalous behaviours at low frequencies found by Los and 
Janssen 1181 in three-dimensional Penrose tiling, are found in the low-frequency regime 
of these spectra. The spectral features in the fracton-like excitation frequency regime 
depend on the force constants CY and B; when alp = 1 and when a/P is not very large, 
the spectrum satisfies a power law p ( o )  wds-' with d,  = 2 but, when a/P approaches 
infinity, it deviates from the power law. In the high-frequency regime, some specific 
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vibrational modes which are degenerate are exhibited; they are relevant to the six kinds 
of local configuration. They are critical except for the highest-frequency mode, which is 
rigorously localized in a small area with an eightfold symmetric axis. The result is 
different from that for Penrose tiling; the vibrational spectrum for the Penrose lattice 
shows only a localized mode at the centre of the spectrum. For the isotropic model, the 
highest-frequency mode is isolated and a frequency gap is found but, when there is no 
longer isotropy, i.e. when @//3 # 1, the frequency gap disappears. 
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