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Abstract. The vibrational densities of states for an octagonal quasiperiodic lattice are cal-
culated. Crossovers from phonon excitations to fracton-like excitations are found in the
low-frequency parts of the spectra (this part is referred to as the continuous spectrum);
meanwhile, localized vibrational modes are observed in the high-frequency parts (this part
is referred to as the characteristic spectrum). The spectral features are governed by erand 3,
the central and non-central force constants of the Born model. For the low-frequency
continuous spectrum, when &/f equals unity {isotropic model) and when /8 is not very
large, a power law is satisfied in the fracton-like excitation frequency regime but, when o/8
approaches infinity, the spectrum deviates from the original power law. For the high-
frequency characteristic spectrum, in an isotropic situation, i.e. in the case when e/ =1,
the localized mode is isolated and a gap separates it from other modes but, when there is no
longer isotropy, the pap disappears.

1. Imtroduction

In recent years, the spectral properties of the quasiperiodic lattice have aroused much
interest; undoubtedly, one major reason for this is the experiments by Schechtman et al
{1} which show strong evidence for the existence of quasicrystals in nature. Owing to the
peculiar symmetries of this kind of structure, one expects some significant features to
appear in their electronic (or vibrational) spectra. Kohmoto and co-workers {2-4] have
treated theoreticaily the one-dimensional version of quasiperiodic lattices, and Cantor-
set-ike electronic (or vibrational) spectra with self-similar features were found. For
Penrose tiling, the two-dimensional quasiperiodic lattice with a fivefold axis, it is not so
easy to obtain the eigenvalue of the Hamiltonian analytically; many numerical methods
have been developed to obtain the electronic (and/or vibrational) spectra. The earliest
work on the spectral properties of a two-dimensional quasiperiodic lattice was done by
Choy [5] and by Odagaki and Nguyen [6]; both investigated the behaviour of s electrons,
and a central peak was found in the electronic density of states. Kohmoto and Sutherland
[7,8] explain the central peak as a zero-width band of localized electronic states;
furthermore, they showed the local pattern of the localized states. In addition, the
vibrational density of states, as an analogue of the electronic density of states, was briefly
referred to in [6-8]. Sire and Bellissard [9] investigated the electronic behaviour of the
octagonal lattice; they obtained the electronic spectra and structure using the renor-
malization group method, but the vibrational properties of this lattice remain unknown.
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In addition to the investigation of the spectral properties of a quasiperiodic lattice,
the investipation of the spectral properties of fractals has recently been very active
too. Since Alexander and Orbach [10] anticipated theoretically a new excitation (they
referred to it as a fracton) frequency regime in the low-frequency spectra of fractal
systems, many numerical methods had been used to check this in the DLA cluster
[11], percolation cluster [12] and other fractal clusters. We have studied the fractal
dimensionalities for different quasiperiodic lattices with a mass scaling scheme [13]; it is
found that quasiperiodic lattices have integral fractal dimensionalities. For a Fibonacci
chain, the dimensionality is one; for Penrose tiling and an octagonal lattice, the dimen-
sionalities are two. By analogy with fractals, we believe that the fracton-like excitation
will appear in the low-frequency part of the vibrational spectrum of a quasiperiodic
lattice but much less attention has been paid to the low-frequency part of the vibrational
spectrum in the past.

We perform our numerical computation on an octagonal lattice in the present work.
The aimis threefold: first, we would like to check the existence of fracton-like excitations
in quasiperiodic lattices: secondly, it is expected that the high-frequency spectral proper-
ties for an octagonal lattice are specific and very different from those of Penrose tiling;
thirdly, we consider the vector nature of the vibrational problem (which is more realistic
for an elastic system), to determine how the vector nature of the vibration influences the
spectrum. In this case, the system is not isotropic, the vibrational problem cannot be
incorporated into the s-electron problem, and we expect some specific features to appear

in the spectrum; however, this type of problem has previously been ignored by
researchers.

2. Model and method

According to the Born model [14], the potential energy of the lattice is expressed as
NN NN

V=ia - ) 2 (G~ w)ry]* + 3B 2w - €
Ly L

where u; is the displacement of the ith site, ry is the unit vector from site ¢ to site j, &
is the bond-stretching force constant and 3 is the bond-bending force constant; the
summation runs over all the nearest neighbours. Thus, the vector nature of the elastic
forces is included naturally. When o is chosen to equal 8, the system considered
becomes isotropic.

We adopt the widely used recursion method of Haydock et al [15, 16] which offers
fast computational speed and, above all, reliability.

The local vibrational density of states [11] can be expressed as

pL(w) = —Qaw/x) Im (u,|1/(0? — W)|u,} = —2w/x) Im (u, | G|u;) (@)
where G = 1/(w? — W) is the Green function, W is the dynamical matrix and |u;) is

the displacement vector of site /. The global density of states following Choy [5] and
Peng and Tian [11] takes the form

po (@) = ~(20/x) Im (0[G]0) - ' (3)

where |0} is the initial vector whose elements are uncorrelated variables chosen from
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Figure }. A portion of the octagonal lattice, where six kinds of sites are indicated by V,
(f=3,4,5,6,7, 8), I representing the coordination number of the labelled site,

a Gaussian distribution with mean zero and covariance unity. In the actual calculation,
ten initial vectors are chosen to obtain the average.

The octagonal lattice is a projection of a four-dimensional regular lattice onto a
two-dimensional plane. The cluster used in our calculation is rather large, containing
10 457 sites; we expect that the boundary influence can be greatly reduced. Figure 1
shows a portion of our cluster; the line segments joining two sites represent bonds,
and all bonds have equal lengths. The figure in fact is a tiling with eightfold symmetry.
Two kinds of tile can be seen: one is a square, and the other is a rhombus with an
acute angle /4. Six kinds of local configuration can be noted; those in which the
centra] sites are indicated by V, (I =3, 4, 5, 6, 7, 8 denoting the coordination number
of the central site) are examples. In our model, all sites are occupied by the same
atoms with mass unity, and the bond lengths are all taken to be equal to unity; by
changing the force constants « and 5, we caiculate the corresponding spectra.

Under the free boundary condition, for the cluster, we calculated three series of
densities of states (including global and local values), firstly with the constants o = 1,
B =0, secondly with o = 1, § =1, and thirdly with a =35, 8 =1, and also a global
density of states with & = 50, 8 = 1. Each spectrum can be considered to be composed
of two parts: the low-frequency part is smooth and continuous, while the high-
frequency part has many sharp jumps (for an integrated density of states) or sharp
peaks (for the density of states). We shall refer to the two parts as the continuous
spectrum and the characteristic spectrum flereafter.

3. The low-frequency continuous spectrum

Figures 2(a), 2(b), 2(c) and 2{d) show the global vibrational densities of states for the
cluster withae=1,8=1,witha =3, =1, witha=30,=landwitha=1,8=0,
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respectively. We use a logarithmic coordinate system; the horizontal axis is the
logarithm of the angular frequency of vibration, and the vertical axis is the logarithm
of the global vibrational densities of states. Here, we consider only the continuous
spectra, i.e. the low-frequency parts of the whole spectra. From the figure, the
anomalous behaviour at low frequencies can be clearly seen near the frequency w,;
similar anomalous behaviour in three-dimensional Penrose tiling was reported by Los
and Janssen [17]. Below the frequency w,, the spectra are straight lines, and the slopes
are unity. They correspond to typical phonon excitations, satisfying the power law
po(w) = @1 with d, = 2. For the three cases with ¢ =1, =1, with =5, =1
and with o = 50, 8 = 1, within a frequency region above w,, the spectra can be fitted
as straight lines; the slopes are still unity, i.e. the spectral dimensionalities are two,
exhibiting the same power law pg{w) < w%~!. Comparing the figure with the
vibrational spectra for fractals, e.g. for a pLA cluster [11] and a percolation custer
[12], it can be seen that the characters of these spectra are completely similar to those
for fractals. In the case of a fractal, the frequency w. is called the crossover frequency;
below ®,, the vibrational excitation is typical of a phonon too while, above w,, the
vibrational excitation is due to a fracton (and no [onger to a phonon!j. There are
two differences between the fracton and phonon [10] as follows: first, the spectral
dimensionality of the fracton is different from that of the phonon, because the former
depends on the fractal dimensionality of the system being considered, while the latter
is a fixed integer; secondly, the vibrational state of the fracton is different from that
of the phonon, because the former is usually non-extended, while the latter is always
extended. As an analogue, in the case of a quasicrystal, the linear spectra above w,
(we call w, the crossover frequency in this case also) should correspond to a new
vibrational excitation; we introduce the term fracton-like to denote it in order to
indicate the similarity between it and the fracton in the fractal system. There is
a difference between the fracton-like and fracton spectral dimensicnalities, which
originates from the difference between the fractal dimensionalities of the fractal and
the quasicrystal. For a two-dimensional fractal, the spectral dimensionality is not
larger than the fractal dimensionality (which is not larger than 2) but, for a two-
dimensional quasicrystal, the spectral dimensionality (see figures 2(a)~2(c)) is equal
to the fractal dimensionality (which is 2 [13]). Although the fracton-like spectral
dimensionality above e, is the same as that of a phonon below w, (both equal to 2),
we shall see that the vibrational state for fracton-like excitation is quite different from
that for the phonon in the next paragraph; this is the very reason why we need to
introduce the term fracton-like to distinguish the new excitation from phonon excitation.
From the above result and according to d, = 2ds/d,, [10], one can obtain the random-
walk dimensionality d,, = 2, for {r%) = t¥9w = t; there is no anomalous diffusive behav-
iour. When a;/8 approaches infinity the spectrum in the frequency region becomes flat
(see figure 2(d)). The deviation from the original power law results from the influence
of the anisotropic force. A similar result was found in the percolation modei {18] and
the DLA model [11].

It is interesting to examine the vibrational states in the fracton-like excitation fre-
quency regime. Figure 3 shows the local densities of states in the low-frequency part for
sites Vi~V with force constants & = 1, 8 = 1. Below w,, the densities remain the same,
independent of the sites, which indicates that the phonon states are extended but, above
., the densities depend on the sites, which suggests that fracton-like excitations are
neither extended nor localized (see the arguments about vibrational states in the next
section).
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Figure 2. The vibrational densities of states for the octagonal lattice with the following
constants: (a) = 8 =1;(b)a= 5,6 = 1;{c) = 50,8 = 1;(d) a« = 1, = 0. The crossovers
are indicated.

4. The high-frequency characteristic spectrum

Now, let us concentrate on the characteristic spectrum, which implies characteristics
related to the structure of the octagonal lattice. Figure 4 shows the integrated densities
p'(w) of states of the system with o = 1, 8 = 1. Figure 4(a) shows the global density
p¢(w) of states and figures 4(b)—4(g) show the local densities of states for six different
kinds of site: Vg, V-V, Figures 5 and 6 are similar to figure 4, but with o =5, 8=1
and with @ = 1, B = 0, respectively. Comparing figure 4 with figure 5 and figure 6, we
find that the global structures of the corresponding spectra are similar. Let us examine
figure 4 first. We can find some small steps in pj;(w) (see figure 4(a)) which are specified
in the figure. This means that there exist some degenerate vibrational modes at these
specific frequencies. Comparing p§ (@) (figure 4(a)) with p{ (@) (figures 4(b)-4(g)), we
can see that these steps originate from the larger steps in the different p; (w). The large
steps in a given local spectrum indicate that the corresponding vibrational modes are
favoured by the special local configuration; so they are degenerate, For example, mode
w4(1) and @4(2) are favoured at site V4, w5is favoured at V5, and eigenmode wg = 3.05
is absolutely dominant at Vg, There exists a simple relation between the frequency of a
vibrational mode favoured by a certain site and the coordination number of the site; the
larger the coordination number, the higher is the frequency or, to express it in another
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Figure 7. The local configuration of site V, to its second-nearest neighbours,

way, the denser the local configuration, the higher is the frequency of the mode that it
favours.

From these local spectra (figures 4(b)-4(g)), we can, furthermore, obtain infor-
mation about the vibrational states of these specific modes. There exist three states for
the vibrational modes.

(1) If all the local densities of states for all the sites in the cluster are the same for a
certain vibrational mode, the mode is extended.

(2) For a given mode, if the local densities of states for the sites in an area are not
zero but become zero for the sites beyond the area, the mode is localized at the area.

(3) If both the conditions above cannot be satisfied, the vibrational mode is neither
extended nor localized; the state is called critical.

According to these arguments, all the specific modes should be critical except the
highest-frequency mode wg, which is localized.

Let us examine mode wy carefully. It produces a sharp jump at wyin the local density
of states for site Vg (figure 4(b)); so the mode has a much larger amplitude at the site.
Comparing the local density of states for site Vg with those for its nearest neighbour V,
{figure 4(c)), second-nearest neighbour V, (figure 4(d)) and third-nearest neighbour V
(figure 4(e)), we find that the jumps at wg decay to zero rapidly from Vgto V; this means
that the amplitude of mode wyg attenuates to zero at the third-nearest neighbour, and
thus the mode is highly localized, with a localized radius of about V2 + 1. Mode wyg is
not only localized but also an isolated state in the frequency space. At both sides of wyg,
within a range of frequencies, ps(w) and all p| (w) are flat, causing the densities of
states to fall to zero; so there exists a frequency gap at the left-hand side of wg (in fact,
the gap width is wg — ®5), isolating mode w; from the modes below wg, while wgis the
highest-frequency mode.

We can make an approximate calculation for wy under the isotropic model. Figure
7 shows the local configuration of site Vg to its second-nearest neighbours. When o =
B, equation (1) gives the isotropic potential

NN
V=42 alu, -l 4)
by

Under the potential, the vector problem becomes a simple scalar problem; we can
remove the vector notation for u. With |u,) representing the displacement of site Vy,
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luy (i=1,2,.. .,8) the displacements of its eight nearest neighbours and |U)) (I =

1,2, . . ., 8) the displacements of its second-nearest neighbours, we have
2 s
m gy luad = 2 (Juo) = ). ®)

Let [ug) = |u,) exp(iot); we get
8
¢mvmw—§m> 6

where ¢ = mw?/a. For eight nearest neighbours, we have
oluyy =3[u;) = up) — |Uy) — [ Us)

gf>.|u2)=3[u2)—|u0)—!Ul)-—[Uz) )

¢|ug) = 3lug) — [uo) = |Us) — | Us).

From equations (6) and (7), extracting the |« and inserting them in equation (6), we
get a relation between |ug) and | Up):

(40 - 252 )mwmw—zwn @

Because mode wy is highly localized, |U) is much smaller than ju,); ignoring |Up,
approximately we have

d¢ - ¢p(¢ —3)/2=8. ©)

The equation gives two roots: the reasonable rootis ¢ = 9.3, or mw?/a = 9.3. Let m =
1, & = 1; according to our model, we get w = 3.05, which agrees with our numerical
result wg = 3.05 excellently.

Although the structures in figure 4, figure 5 and figure 6 are similar, there are
differences between them. When «/f increases from unity, the gap exhibited very
clearly in the case of @ = f§ (figure 4) becomes so small that it cannot be recognized any
longer (see figures 5 and 6). Thus, mode w; is not isolated now, but it is still localized.
Figures 5(b)-5(e) and figures 6({b)-6(¢) show the result evidently. With a simple calcu-
lation, we find that mode wg in all cases is superlocalized, and its eigenfunction
~exp(—Ar"), with A > 1 and y > 2.

5. Conclusions

The vibrational densities of states for an octagonal quasiperiodic lattice with varying
force constants are calculated. Crossovers from phonons to fracton-like excitations,
which appear to be the anomalous behaviours at low frequencies found by Los and
Janssen [18] in three-dimensional Penrose tiling, are found in the low-frequency regime
of these spectra. The spectral features in the fracton-like excitation frequency regime
depend on the force constants & and 8; when «/f = 1 and when a/f is not very large,
the spectrum satisfies a power law p(@) o« w%~! with d; = 2 but, when «/f approaches
infinity, it deviates from the power law. In the high-frequency regime, some specific
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vibrational modes which are degenerate are exhibited; they are relevant to the six kinds
of local configuration. They are critical except for the highest-frequency mode, which is
rigorously localized in a small area with an eightfold symmetric axis, The result is
different from that for Penrose tiling; the vibrational spectrum for the Penrose lattice
shows only a localized mode at the centre of the spectrum. For the isotropic model, the
highest-frequency mode is isolated and a frequency gap is found but, when there is no
Jonger isotropy, i.e. when a/f # 1, the frequency gap disappears.
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